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When air blows over water the wind exerts a stress at the interface thereby inducing 
in the water a sheared turbulent drift current. We present scaling arguments showing 
that, if a wind suddenly starts blowing, then the sheared drift current grows in depth 
on a timescale that is larger than the wave period, but smaller than a timescale for 
wave growth. This argument suggests that the drift current can influence growth of 
waves of wavelength i that travel parallel to the wind at speed c. 

In narrow ‘inner’ regions either side of the interface, turbulence in the air and water 
flows is close to local equilibrium; whereas above and below, in ‘outer’ regions, the 
wave alters the turbulence through rapid distortion. The depth scale, l,, of the inner 
region in the air flow increases with c/u,, (u*, is the unperturbed friction velocity in 
the wind). And so we classify the flow into different regimes according to the ratio 
&/A. We show that different turbulence models are appropriate for the different flow 
regimes. 

When (u., + c) /UB(A)  4 1 (U,(Z) is the unperturbed wind speed) 1, is much smaller 
than A. In this limit, asymptotic solutions are constructed for the fully coupled 
turbulent flows in the air and water, thereby extending previous analyses of flow over 
irrotational water waves. The solutions show that, as in calculations of flow over 
irrotational waves, the air flow is asymmetrically displaced around the wave by a 
non-separated sheltering effect, which tends to make the waves grow. But coupling 
the air flow perturbations to the turbulent flow in the water reduces the growth rate 
of the waves by a factor of about two. This reduction is caused by two distinct 
mechanisms. Firstly, wave growth is inhibited because the turbulent water flow is also 
asymmetrically displaced around the wave by non-separated sheltering. According to 
our model, this first effect is numerically small, but much larger erroneous values can 
be obtained if the rapid-distortion mechanism is not accounted for in the outer region 
of the water flow. (For example, we show that if the mixing-length model is used in 
the outer region all waves decay!) Secondly, non-separated sheltering in the air flow 
(and hence the wave growth rate) is reduced by the additional perturbations needed 
to satisfy the boundary condition that shear stress is continuous across the interface. 
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In a companion paper, we develop a numerical model for the coupled air-water 
flow with waves of arbitrary speed and in another we examine the detailed energy 
budget of the wave motions. 

1. Introduction 
How does the wind generate ocean waves, and how do these waves evolve? For 

many years these questions have been studied using a variety of techniques. Yet the 
large body of literature currently available tends to present a confusing, and often 
contradictory, picture. Most investigators agree, however, that the best available 
theoretical and numerical models are unable to explain observations of wave evolution 
over the whole range of wind and wave speeds. Ursell (1956) remarked that ‘wind 
blowing over a water surface generates waves in the water by physical processes 
which cannot be regarded as known.’ Whilst our knowledge has certainly advanced 
over the past forty years, as recently as 1990, Donelan & Hui observed that ‘ ... our 
knowledge of the wind input into the waves is still rather primitive. The theoretical 
ideas of the fifties have not been capable of explaining the observed growth rates and 
essentially no new ideas have followed.’ 

A principal motivation for continued study of wind-waves is the disparity between 
observed values of the rate of energy transfer from the air flow to the wave motions 
and the, considerably smaller, values obtained from analytical and numerical models. 
For example, Hasselmann & Bosenberg (1991) concluded that the best available 
models gave values of y (the rate of energy transfer from wind to waves per unit 
time per radian) a factor of about two smaller than values they measured at sea. 
Figure l(a) is reproduced from Plant (1984), who collated and plotted measurements 
of y / f w ,  against uta/c on logarithmic axes (here u., is the friction velocity in the 
air, c wave phase speed and f w  is the frequency of the wave). Despite considerable 
scatter, even on logarithmic axes, the data follow approximately a power law, at least 
for large values of u*,/c. Hence Plant suggested that 

(1.1) 
P a  

P w  
Y l f w  = 2.--P(U*a/C)2 

( p a  and p w  are the densities of air and water) and Plant found emperically that p = 
32 k 16. Whilst Plant’s correlation has certainly been useful in guiding developments, 
the axes in figure l(a) tend to exaggerate small values of c/u., (i.e. less than about 
5), which are commonly measured in laboratory experiments. In the field c/u., has 
moderate to large values (which range from about 5 to 20 in Snyder et aZ.’s 1981 
experiments) that are tightly bunched on Plant’s correlation. Plant’s correlation has 
become the benchmark test for theoretical and numerical models, but, since it masks 
the range of c/u,, that is applicable to the ocean, we do not believe it to be sufficient 
validification of a theory or model: comparisons of other quantities such as vertical 
profiles of streamwise-velocity perturbation and shear stress (which have both been 
measured in laboratory experiments, e.g. Hsu, Hsu & Street 1981; Hsu & Hsu 1983) 
are also required. 

We focus on the oceanic range of c/u*,  and figure l (b)  shows the data collected 
by Plant (1984) replotted with p against c/u*, on linear axes. Figure l(b) shows 
how data that follow a quadratic dependence on c/uIa in figure l(a), which therefore 
has p constant, are only a small fraction of the total range of c/u*, values. Of 
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FIGURE 1. Data collected by Plant (1984) for growth rate of wave energy: 
( b )  linear axes. 

(a) logarithmic axes; 

course, the data in figure l ( b )  show large scatter, but p does seem to decrease 
systematically as c/u*, increases. Scatter in the data has been attributed by some 
experimental investigators to variation of parameters other than c/u., (Snyder et al. 
198 1); whereas other experimentalists (Hasselmann & Bosenberg 1991) have dismissed 
the importance of other parameters. We consider in detail which parameters can cause 
significant variations of /I in Belcher, Harris & Street (1994, hereafter referred to as 
Part 3) .  

In an effort to address some of these deficiencies of present models, we study the 
processes that control energy and momentum exchange across the air-sea interface by 
developing theoretical and numerical models that are compared with data and other 
models. In this first part of our study, we focus on some theoretical aspects of the 
flow and develop an analytical model for the coupled turbulent air-water flow. Harris, 
Belcher & Street (1994, hereafter referred to as Part 2), describe a numerical model 
of the coupled air-water flow and systematically compare profiles of the velocity and 
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shear stress with the analytical model and experimental data. Finally, in Part 3, we 
examine the energy budget of wave motions by using results from the theoretical and 
numerical models. One of the overall goals of our studies is to compare results from 
our models and those of others with the data plotted in figure l(b). 

We address in detail the role played in the development of wind waves by the 
wind-driven drift current in the water. This current is generated by the shear stress 
exerted by the wind at the water surface. Laboratory measurements of this water-side 
boundary layer (e.g. Wu 1975; Cheung & Street 1988) show that it is fully turbulent 
even at low wind speeds. It is already known that theoretical values for the growth rate 
of short-wavelength capillary-gravity waves change significantly when the coupling 
between air and water motions is properly analysed (Valenzuela 1976; van Gastel, 
Janssen & Komen 1985). But for longer wavelengths the role of the sheared drift 
current is not well understood. Consequently, we analyse fully coupled models of 
air-water flow with a wavy interface. In this first part of the study the analytical 
model of air flow over an irrotational wave developed by Belcher & Hunt (1993) is 
extended to account for perturbations to the sheared drift current in the water. The 
numerical model described in Part 2 also accounts for motions in the water. 

Following most previous investigators, we imagine a base flow that consists of 
an air-water flow with a flat interface. In $2, scaling arguments are developed to 
justify the form of base flow that we use. Superimposed onto the base flow are 
two-dimensional waves of low slope that travel parallel to the wind. The linear 
changes to the unperturbed state induced by the wavy interface are then calculated 
(as described in $3). Linear changes are considered so that the problem is made 
tractable; moreover, careful interpretation of a linear analysis can give insight into 
the processes that persist in the air and water flows when the waves have larger slope. 
For example, Belcher & Hunt (1993) found that, when u*/(UB(A) - c) + 1, a non- 
separated sheltering mechanism provides the largest contribution to the asymmetric 
surface pressure (and hence wind-input of energy to waves). This mechanism is clearly 
robust in the sense that it persists at large amplitudes. Nevertheless, we recognize 
that there are further nonlinear processes, associated with the deforming interface, 
that influence wind-wave interactions. For example, inviscid wave-wave interactions 
(Phillips 1960; Hasselmann 1962) and wave breaking (e.g. Banner & Peregrine 1993) 
are both nonlinear phenomena and so are neglected here. We assume that, for small- 
amplitude waves, energy transfer from wind to waves is unaffected by these nonlinear 
effects; their role in the evolution of wind-sea is modelled in the evolution equation 
for the wave-energy spectrum by transfer terms that are simply added to the wind 
input term (see e.g. the WAMDI Group 1988). 

A critical question in modelling wind-wave interactions is the choice of turbulence 
model used to describe Reynolds stress (Davis 1972). In previous studies these models 
range from assuming the Reynolds stress has no effect on the flow perturbations 
(e.g. Miles 1957); using the simple mixing-length model throughout the flow (e.g. 
Gent & Taylor 1976); and using a two-equation turbulence model (e.g. Al-Zanaidi & 
Hui 1984, who used a kinetic energy-vorticity formulation). Only a few of the previous 
studies have reasoned their choice of turbulence model with physical argument: 
Townsend’s (1980) study was based on a systematic extension of Townsend (1972); 
Belcher & Hunt (1993) used a theoretical scaling developed by Belcher, Newley & 
Hunt (1993) to motivate their choice of model. The turbulence model used by Belcher 
& Hunt (1993) is appropriate for air flow over slowly moving waves, and, in $4, we 
generalize their arguments to investigate the response of the turbulence to waves of 
arbitrary speed. We then propose a way of classifying wind-wave flow into different 
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FIGURE 2. Definition sketch of the flow geometry in a frame of reference that moves at 
of the unperturbed drift current at the water surface. 

the speed 

parameter regimes where different types of turbulence model are needed to model 
the air flow successfully. This classification is central to our work and determines 
the choice of turbulence models used in the analytical and numerical studies. Similar 
arguments are also used to develop a turbulence model for the water-side boundary 
layer. The sensitive role of the turbulence model is exemplified by recent asymptotic 
studies of air flow over prescribed waves (Jacobs 1987; van Duin & Janssen 1992; 
Belcher & Hunt 1993) that use turbulence models of apparently only slightly different 
form, but obtain results that are qualitatively different. In 57 we compare these 
theories and show how and why the different turbulence models give qualitatively 
different results for key quantities, such as the asymmetric pressure (which controls 
energy transfer to the wave motion). 

2. Base flow profiles and timescales 
Air flows in the x-direction as a turbulent boundary layer over a flat water surface 

at z = 0. The wind stress exerted at the water surface drags a sheared drift current in 
the water, which has speed Us at the surface and decays to zero far below the interface. 
This is defined here to be the base or unperturbed flow. We perform calculations in a 
frame of reference where there is no flow at the interface; the sheared drift current is 
then zero at the interface and asymptotes to -Us far below the interface. Base flow 
profiles and the flow geometry are sketched in figure 2. 

In the presence of interfacial waves, a distinction has to be made between the base 
flow and the wave-averaged flow; the latter is defined here to be the time-average of 
experimental measurements (or numerical simulations) of air flow over waves and 
water flow under waves. The wave-averaged flow is composed of the base flow plus 
the average over many wavelengths of wave-induced perturbations, which can be 
significant despite being of second order in wave slope. In an experiment, waves are 
always present so that direct measurement of the base flow is difficult and care must 
be exercised in establishing properties of the base flow from profiles of wave-averaged 
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experimental measurements. As discussed in Part 2, this difficulty is particularly acute 
when deriving the unperturbed friction velocity from experimental data (usually the 
wave-averaged friction velocity is cited). Finally, in this study, the term mean flow is 
used to describe the ensemble-averaged flow (so that turbulent fluctuations have been 
averaged out). 

This approach of modelling the wind-wave flow as a base flow plus perturbations 
differs from recent studies of the development of a wind-induced drift current in the 
presence of waves (Jenkins 1987; Weber & Melsom 1993). The cited investigations 
seem to assume without justification that the wind exterts no unperturbed stress 
at the sea surface: the stress at the interface comes entirely from wave-averaged 
perturbations to the air flow. In 52.2 we present timescale analyses which suggest that 
this latter approach is not self-consistent. 

2.1. Base flow in the air 
In the unperturbed state, the air flows as a neutrally stable atmospheric boundary 
layer, which has a typical depth, a,, of about 1 km (where its growth is limited 
by Coriolis effects). The Reynolds number (based on geostrophic wind speed and 
boundary-layer thickness) is very large and the unperturbed-velocity profile, UB,  is 
logarithmic from near the surface (where the flow may be rough, transitional or 
smooth depending on the sea state) up to about one fifth of the boundary-layer depth 
(Townsend 1976), i.e. up to about 200m. In the analytical model, the unperturbed- 
velocity profile is assumed logarithmic through all depths of interest (which are 
defined in 55) and so the shear stress is constant, hence 

U B k )  = (u*a/x) ln(z/zo), % ( Z )  = PaUla,  (2.1) 
where pa is the density of air, u., is the unperturbed friction velocity in the air 
flow, IC = 0.4 is the von Karman constant and zo is the roughness length of the 
surface (or the equivalent roughness of a smooth surface). In the theoretical study, 
rough interfaces only are considered (although the theory can be extended to smooth 
interfaces); in Part 2, where the numerical model is described, different interfacial 
conditions are treated more thoroughly. 

2.2. Base flow in the water 
When wind blows over water the shear stress exerted by the wind at the surface drives 
a current in the water. Measurements, e.g. Cheung & Street (1988), show that, even 
at low wind speeds, the sheared current in the water is turbulent. We therefore model 
the sheared current in the water as a zero-pressure-gradient turbulent boundary layer. 
In the inner region (defined in 34) of the water flow the velocity profile is assumed 
logarithmic and the shear stress constant, so that 

(2.2) 

where u*w is the friction velocity in the water flow, pw is the density of water and 
zo is the roughness length of the surface, which for simplicity is assumed to be the 
same as in the air flow (Kondo 1976). Outside the inner region, Ue is assumed 
monotonic decreasing, but for the linear theory it does not have to be specified 
exactly. Continuity of shear stress at the interface implies that 

(2.3) PaU,, = P W U , , .  

Our model for the base flow in the water requires justification because, in a fetch- 
limited flow, or when the wind suddenly starts blowing, the sheared current grows in 

2 U B ( Z )  = - - ( ~ * ~ / x )  M-z/zo), Z B ( Z )  = P ~ U , ~ ,  

2 2 
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depth. It is therefore appropriate to examine the timescale on which the depth, 6,, of 
the wind-driven boundary layer grows and compare it with the timescale on which 
waves grow. To do this, it is assumed that waves do not affect boundary-layer growth. 
Since waves promote mixing (Komori, Nagaosa & Murakami 1993) and therefore 
accelerate growth of the wind-driven boundary layer, the following estimates of 6, 
are likely to be lower bounds. Ultimately, growth of the boundary layer is limited 
by other physical processes. For example, stable stratification could control 6,, or, in 
a neutrally stratified flow, growth of the drift-current boundary layer can be limited 
by Coriolis force, which imposes a depth scale of O(u,,/fc) = 30m (here f c  is the 
Coriolis parameter). 

The sheared current in the water is considered to be a neutrally stratified turbulent 
boundary layer, whose depth, 6,, at time t may be estimated from 

6, - (v,& (2.4) 

where vt is the eddy viscosity. In the outer part of the boundary layer, which controls 
its growth into the ambient fluid below, vt scales on the friction velocity, u*,, and the 
boundary-layer depth so that (2.4) implies 

6, - u*,t. (2.5) 

Anticipating the results of $6.3, wave growth is exponential, a(t)  = a(0) exp(t/TG), 
with e-folding time TC that scales as 

where Tw is the period and c is the phase speed of the wave. 
The depth scale, l,, of the inner region (defined in $4.2) is the depth scale of a thin 

layer in the water near the interface where turbulent stresses significantly affect flow 
perturbations and it scales as 

where 1 is the wavelength and U ,  is a velocity scale for the base flow in the water 
(it is defined precisely in $5). The second relation in (2.7) is obtained because U,  =ec 
for most wind-wave systems (see $6). If I ,  +6, then interactive perturbations are 
induced in the drift current and it can affect wave growth. From (2.5), the drift- 
current boundary layer grows to depth 1, after a time l,/u*, and in this time the 
wave amplitude, a( t ) ,  grows to 

For c/u., in the range 1-30 (which implies wavelengths in the range 0.1-100m if 
uSa = 0.5 m s-l) the wave amplitude grows by a factor of e1/loO0-e'. It is interesting 
that longer waves (with larger c/u,,) grow on a timescale that is comparable with 
the timescale for growth of the drift current. The analysis to be presented in $5 is 
valid when 1, +6,; a suitable value for practical purposes is I ,  5 6,/5. Our scaling 
analysis indicates that, for most waves, this condition is satisfied before the waves 
have grown significantly. 

But does the unsteadiness of 6, (and hence the unsteadiness of velocity profile in 
the water) affect perturbations to the flow? To answer this question, we examine how 

5 FLM 271 
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much the depth of the drift current increases compared with a wavelength in one 
wave period, i.e. consider the ratio 

d6,ldt 

A/ Tw 
The unperturbed flow in the drift current is therefore modelled as being steady. 

Most previous studies of wind-wave generation have assumed that the flow in the 
water is inviscid and irrotational, but this is not consistent with laboratory studies 
even for short times after wind starts blowing (e.g. Wu 1975; Cheung & Street 1988). 
The waves have a period, Tw, that is much smaller than the timescale, Tc, for the 
drift current to grow significantly (compared with A), Tc - Tw(pw/pa)f, which is in 
turn much smaller than the timescale for wave growth, TG N Tw(p,/p,). It therefore 
seems justified and worthwhile to model the sheared layer in the water as a fully 
developed turbulent boundary layer that is steady in time. 

3. Formulation of the perturbed-flow model 
Now consider flow over and under a travelling wave, z = q(x - c t ) .  Here, the wave 

phase speed, c, is measured relative to the coordinate system that moves to the right 
with speed Us, so that the base flow is zero at the interface in this frame of reference. 
Flow with the wave is expressed as the base flow (defined in $2) plus a perturbation, 
e.g. horizontal velocity 42 = UB + Au and the Reynolds stress tensor Ti! = Tij + AT.. LJ . 
Pressure is referred to hydrostatic pressure, which is defined from the instantaneous 
water surface, so that, if B is the total pressure, 9 = PB +Ap+pGlg’(q -z). Pressure at 
the interface is then PB + Ap. The wave slope, ak, is assumed small so that equations 
governing the perturbations can be linearized about the undisturbed state, 

(3.1) 
aAu aAu dUB 1 aAp aq aAT dAz, 
at ax dz Pa ax ax az ax ’ 
- + UB- + AW- = - g’-H(q - Z )  + - + ~ 

(3.2) 
1 aAp adz  aAT,, 

at ax pa az ax az , +--+- saw - + u B - - - - -  aAw - 

aAu aAw --+-=o, ax az (3 .3)  

where subscript a refers to either in the air or water, H is the Heaviside step 
function and g’ = g(pw - p,)/p,  is reduced gravity. In the above equations, the 
roughness Reynolds number, u+,zo/v, is assumed to be sufficiently large that the flow 
is aerodynamically rough and the viscous stresses can be neglected throughout the 
flow. Far above and below the interface the perturbations decay, i.e. 

} (3.4) 
A u - 0 ,  Aw + O ,  Az+O, A p - 0 ,  asz -oo ,  

Au + 0, Aw -+ 0, AT + 0, Ap -+ -p,g‘q, as z - -m. 

The lower boundary condition on Ap ensures that the total pressure is just the 
hydrodynamic head. At the interface the velocity is continuous and therefore the 
vertical velocity equals the vertical speed of the interface 

Dv Aw,(O) = Aw,(O) = -. Au,(O) = AuW(O), 
D t  (3.5) 

A dynamical boundary condition is also required at the interface. Since surface 
tension may be neglected for long enough waves, the normal stress is continuous. 
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The boundary condition on tangential stress depends on conditions at the interface. 
Here we suppose that the small ripples at the surface are in a local equlibrium with 
the wind so that shear stress is continuous across the interface. To leading order in 
ak, this implies the following coupling conditions on the pressure and shear-stress 
perturbations : 

- APa(0) + AZzza(0) = -APw(O) + AZzzw(O), ATa(O) = AZW(0). (3.6) 

3.1. Transformation to wave-following coordinates 
A wave-following coordinate system (X,Z, T)  is defined, following Hsu et al. (1981) 
and others, by 

where, by construction, the interface, z = y, is defined by Z = 0, i.e. f(0) = 1. A 
similar, but orthogonal, transformation was used by Benjamin (1959) and Belcher & 
Hunt (1993). The function f is defined so that the lines of constant Z are wave- 
induced streamlines produced if the flow were irrotational, so that for a sinusoidal 
wave y = Re{ae’k(x-ct)} and flow that is unconfined in the vertical 

t = T, x = X, z = Z +f(Z)y(X, T), (3.7) 

In the wave-following coordinates the vertical-velocity perturbation is separated 
into two parts, 

where the first part is the vertical velocity that would be induced in inviscid irrotational 
flow over the wave. Other pertubation quantities are defined as equal to those in the 
Cartesian coordinates, e.g. Au(x, z) = Aud(X, Z). 

On using the chain rule and definition of Awd, the equations governing linear 
perturbations in the wave-following coordinates become 

AW = -(c - UB)fay/aX + Awd, (3.9) 

(3.10) 

(3.12) 

Equations (3.10) and (3.1 1) actually have two additional terms that arise from the 
coordinate transformation. But these terms are negligible because they are products 
of the vertical-coordinate stretching, f ,  and gradients of unperturbed Reynolds stress, 
8 Tij/aXj : namely, 

f(ay/ax)(dTxx/dz), f’dTxz/dZ (3.13) 
on the right hand side of (3.10) and 

(3.14) 

on the right hand side of (3.11). These terms are all smaller than the retained terms 

5-2 
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because the unperturbed flow is in the logarithmic part of the boundary layer where 
the unperturbed stress, Tii, is approximately constant (Townsend 1976). 

Boundary conditions far from the interface are unchanged by the coordinate 
transformation, but the kinematical condition at the interface is modified by the 
definition of Awd and becomes 

Awd = O  at 2 = O .  (3.15) 

In the following the wave-following coordinate system is used throughout but the 
subscript d is dropped. 

Velocity perturbations scale on Uo, (where a denotes either air or water), which is 
a value of the unperturbed velocity relative to the wave speed and is defined more 
precisely in 95.3. The undulating shape of the wave induces a pressure perturbation 
that scales as p,U&, where pU is the density of air or water. Finally, Reynolds-stress 
perturbations scale on p a ~ ? U 7  the base-flow shear stress in the air or water. These 
scalings are next used to examine how turbulence in the unperturbed flow is affected 
by the wave, which leads to suggestions for turbulence models that can be used for 
the perturbed flow. 

4. Turbulence models for the perturbed flow 
Belcher et al. (1993) developed timescale arguments to examine how boundary- 

layer turbulence is affected by a slowly moving wave. We now extend these arguments 
to consider waves of arbitrary speed and to consider turbulence in the water flow. 
Accordingly, a distinction is made between the types of turbulence model that are 
appropriate for modelling the base flow and the perturbations to that base flow. 
As described in $2, unperturbed profiles in the air and water are considered to be 
zero-pressure-gradient turbulent boundary layers, so that the turbulence is in a local 
equilibrium and a simple eddy-viscosity model is adequate. The Reynolds stress in the 
perturbed flow is, as we shall demonstrate, governed by more complex dynamics and 
a simple eddy viscosity is appropriate over only a small portion of the flow domain. 

4.1. Turbulence in the air,flow 
Timescales of some of the dynamical processes that affect the turbulence in the air 
are first investigated. In general these timescales must be related to properties of 
the nonlinear perturbed flow over a wave; for small changes to the flow, however, 
the timescales can be related to properties of the unperturbed boundary layer, with 
relative errors of O(ak).  

Following Belcher et al. (1993), define a timescale, TD, for a turbulent eddy in the 
air to be advected and distorted by the flow as it passes over a wave that moves with 
speed c (it is the speed of a fluid element relative to the wave that is relevant), 

A second timescale is TL7 a Lagrangian timescale for eddies to interact with one 
another and become decorrelated. In the logarithmic part of a turbulent boundary 
layer 

In a general turbulent flow additional processes affect the turbulence over different 
timescales, for example mean shear has a timescale ( d U ~ / d 2 ) - ' .  In the logarithmic 

TL = I c Z / U * ~ .  (4.2) 
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portion of a turbulent boundary, however, these other timescales are proportional 
to TL, because there are no velocity and length scales other than u*, and 2 in the 
logarithmic layer (Tennekes & Lumley 1972, p. 147). 

Hence there are two timescales that control small perturbations to the turbulence 
and they are comparable, To - TL, at a height l,, where, for the logarithmic mean- 
velocity profile, kl,{ln(l,/zo) - K C / , , , }  - 1. It is convenient in the analytical model 
described in $5 if the constant is chosen such that 

(4.3) kl,{ln(l,/zo) - KC/U*,}  = 2~ 2 . 

In an inner region, where 2 4 l a ,  eddies decorrelate and turn over many times before 
being advected over a wavelength, i.e. T L e T D .  The turbulence is therefore in a 
local equilibrium and an eddy viscosity can be used to relate the Reynolds stress to 
the local mean-velocity gradient. Conversely, in the outer region, where 2 9 1, and 
TLs TD, eddies are advected over the wave before they have time to decorrelate or 
interact with one another. Hence the turbulence in the outer region is controlled by 
rapid distortion. If an eddy-viscosity model is erroneously used in the outer region 
then values computed for the asymmetric pressure and hence the growth rate of the 
wave are qualitatively in error (see Belcher & Hunt 1993 and $7). When 2 N 1, all 
terms in the equation governing perturbed turbulent kinetic energy are significant. 
Further details can be found in Belcher et al. (1993). 

4.2. Turbulence in the waterpow 
Changes to the turbulence in the water-side boundary layer are examined using 
similar methods. There are two changes to the analysis of $4.1: the friction velocity 
is different and equal to u*, = (p,/p,)~u., and the distortion timescale changes to 

k-l 
T -  

o - lUB(2) + CI’ 
(4.4) 

because, in the frame of reference that moves with the wave, the water flow is from 
right to left and of magnitude I U B ( Z )  + cI (see figure 2). The depth scale of the inner 
region in the water, l,, is then defined implicity by 

Flow in the water is divided into inner and outer regions like in the air flow. As c/u,, 
increases, 1, rapidly decreases because pw/pa 9 1, so that, for all but very small values 
of c/u*,, 

kl, N 2~(p,/p,)f(u*,/c) 4 1. (4.6) 
The region of flow subjected to rapid distortion is therefore a large fraction of the 
flow over the whole range of c/u., (> 0). 

4.3. Classijication of $ow regimes and turbulence models for the air $ow 
Figure 3 shows vertical profiles of 7’0 and TL in the air flow for a range of values of 
c/u,, and with kzo = low5 (similar behaviour is observed at other values of kzo). This 
graph confirms the suggestion that TL 4 TD near the interface. Notice how there is a 
logarithmic singularity with TD + 00 at the matched height, zm, where UB(Z,) = c. 
The depth kl, is proportional to the height where the curves To and TL cross, and 
figure 3 shows that as c/u,, increases, 1, and z, move further from the interface. We 
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kZ 

FIGURE 3. Advection and eddy-turnover timescales in the air flow (kzo = lop5); 1, is proportional 
to the height where TD = TL. 

propose that different regimes of wind-wave flow can be identified at different values 
of k & / ( 2 1 c ~ ) ,  the relative depth of the inner region in the air flow. Variation of kla 
and kl,  with C / U . ,  is shown in figure 4. 

To capture completely the Reynolds-stress changes throughout the flow over the 
whole range of wind and wave speeds, it is necessary to use a turbulence model that 
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contains both the rapid-distortion mechanism and local-equilibrium effects. Second- 
order-closure models (e.g. Zeman 198 1) that have transport equations for each stress 
component satisfy these criteria, but they are computationally expensive to solve and 
are not without their own problems (particularly in the near-wall region, see Belcher 
et al. 1993; Durbin 1993). Townsend (1980) constructed a simplified second-order- 
closure model precisely to be a local-equilibrium model near an interface, and to relax 
(through an advection-diffusion equation) to rapid distortion far from the interface. 
In Part 2 we follow a different, and new, approach. The k - E model is modified so 
that the eddy viscosity decays to zero outside the inner region. This procedure gives 
a model that is valid across the whole range of wind and wave speeds and that is 
computationally cheap. Next we examine the limiting cases o f f a s t  and slow waves, 
when simpler turbulence models can be used. 

4.3.1. Slow waves 
We use the term slow waves to denote wind-wave systems with k1, / (2~~) < 1, so 

that the scale height of the inner region is much smaller than a wavelength. A 
working approximation is that kl,/(2x2) 5 i. This is the parameter regime studied 
by Belcher & Hunt (1993). In $5 their analysis is extended to include the turbulent 
motions in the water. 

Following Belcher et al. (1993), where details can be found, we use a truncated 
mixing-length model for slow waves. This is a simple approach that is consistent with 
the limiting behaviours in the inner and outer regions. Throughout the inner region, 
the turbulence is modelled as if in perfect local equilibrium. And so the Reynolds shear 
stress is approximated with the mixing-length model and normal-stress perturbations 
are proportional to the shear-stress perturbation 

AT = 2 u u . , ~ a ~ u / a ~ ,  ~z~~ = -C1AT, ~z~~ = - - c 2 ~ 2 ,  (4.7) 

where c1 = 6.3 and c2 = 4.5 (Townsend 1976). The leading-order formula for the wave 
growth is dependent only on the model for the shear stress, and so is independent of 
c1 and c2 (see $5.5). In the outer region, Reynolds-stress perturbations are modelled 
using rapid-distortion theory (RDT), which shows that, to the linear approximation, 
Azij = O(aku2,). This implies that, in the momentum equations (3.10) and (3.11), the 
Reynolds-stress gradients are much smaller than the inertial gradients, 

Leading-order perturbations in the outer region are therefore calculated by setting 
gradients of Reynolds stress to zero, so that the momentum equations are inviscid. 
Hence, essential changes to the flow can be calculated without performing detailed 
RDT calculations. Hence the mixing-length model is truncated above the inner region. 

4.3.2. Fast waves 
For moderate to large values of C/U,,, k1, / (2~~) is approximately equal to or greater 

than one. Waves with k1,/(27c2) 2 1, we call fast. In this regime figure 3 shows that 
T L  is smaller than T O  at all heights below 1,; hence, an eddy-viscosity model is valid 
up to Z - 1,. Furthermore, field measurements of Snyder et al. (1981) show that the 
pressure perturbation decays away from the interface as eckZ (theory for slow waves 
is in agreement, Belcher & Hunt 1993); hence, for fast waves, perturbations to the 
flow induced by the wave are exponentially small in the region of flow affected by 
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rapid distortion (when Z s 1,). For these waves, an eddy-viscosity model may be used 
throughout the flow: there is no significant outer region. 

When waves travel extremely quickly, there can be a layer between the matched 
height and the interface where TD is less than TL. There is then a region of rapid 
distortion between two layers of equilibrium dynamics (one next to the interface and 
the other around the matched height). This region appears when UB(l,) - c in (4.1) 
is negative; equation (4.3) then has two new solutions if 

c/u*a 3 {In(2rc2/kzo) + I>/., (4.9) 

which implies that c/u*, >, 28 when kzo = 
not considered further in this study. 

These are very fast waves and are 

4.4. Turbulence model for the wateryow 

Variation of the inner-region scale height, kl,, with c/u,, is plotted in figure 4. For 
the waves travelling with the wind considered here, kl, decreases rapidly with c/ut,, 
because the square root of the density ratio factors into the definition of 1, (4.5). 
Hence, in the water, over the whole range of wind and wave speeds, kl,/(2rc2) is 
much less than one (provided kzo is small, as it is in practical situations). The outer 
region, where rapid distortion controls changes to the turbulence, therefore plays a 
decisive role in the water flow. We use the truncated mixing-length model in the 
water flow through all parameter regimes (provided c/u*, > 0). In $7 we show that, if 
the mixing-length model is used in the outer region of the water flow, the results are 
completely unphysical. 

5. Analysis of slow waves 

interface has a two-dimensional wave with sinusoidal variation in time and space, 
The perturbation analysis is performed in terms of normal modes, so that the 

= aRe{eik(X-Ctt) 1, (5.1) 

where Re denotes real part. Linear perturbations forced by the wave are analysed as 
follows. In $5.1 and $5.2 we transform the equations that govern the perturbations 
(3.10)-(3.12) into a generic form, namely the equations that govern flow over a hill. 
To begin, these equations are considered with the boundary condition that streamwise 
velocity is zero at the interface. These equations and boundary conditions have been 
solved by Hunt, Leibovich & Richards (1988) and extended to higher order by Belcher 
et al. (1993). Their method of solution is outlined in $5.3. In subsequent sections, 
we consider the remaining interfacial boundary conditions. The perturbation to the 
streamwise velocity at the surface is allowed to be non-zero in 45.4, which induces 
further perturbations to the flow and makes it possible to match shear stress across 
the interface. Finally, in $5.5 pressure is matched across the interface to determine the 
wave speed and growth rate. 

5.1. Flow in the air 
Linear perturbations to the air flow vary in x and t in the same way as q ,  hence 
scaled dimensionless variables are formed : 

(5.2) 
Au, = Re{Uoali(g)ky}, 
Ap, = Re(p,U,$@)ky}, 

Aw, = Re{UoaG(g)ky}, 
AT, = Re{p,&t(g) ky}, 
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where 2 = kZ and Uo, is an unperturbed-velocity scale in the air (defined in 
$5.3.1) which is also used to make the base-flow profile non-dimensional, so that 
f i ~  = U B / U O ~ .  The characteristic slope of the wave, ak, is assumed small, so that 
lkyl < 1. The unsteady term in each momentum equation (e.g. -ikcG in the x- 
momentum equation) can be absorbed into the definition of unperturbed velocity 
if 

Here z,, = kzo exp(Icc/ula) is the matched height, where the unperturbed wind speed 
equals the wave phase speed. These expressions are substituted into (3.10)-(3.12), 
which become 

d 8  A .  

dZ 
iG+ = -Uif’: 

where ea = u*JUoa is a second small parameter (after the wave slope), which 
is typically 0.03-0.07 in the atmosphere. The following boundary conditions are 
applied : 

A 

G = G = O  o n z  =o,  C , G , ~ , ~ - - + O  a s 2  +a. (5.7) 
Hence to begin, set streamwise velocity at the interface to zero, i.e. Au(0) = 0. 
Perturbations computed with this boundary condition are denoted with superscript 
( U ) .  In $5.4, when the coupling condition on tangential stress is satisfied, Au(0) is 
allowed to be non-zero and further perturbations are induced in the flow. These 
perturbations can be analysed by considering flow over a flat surface that has a 
varying surface velocity. The two partial solutions can be added together because 
they are governed by linear equations (see also $5.4 and Belcher & Hunt 1993). 

5.2. Flow in the water 

In the water, the x-momentum equation (3.10) contains an extra term due to buoyancy, 
namely g ’ d y / d X ,  which is a variation in hydrostatic head due to the undulating level 
of the interface. It does not affect the dynamics of the water-flow perturbations; but 
is important when pressure is matched at the interface. Hence, pressure in the water 
is written as 

Apw = A o ( ~ )  - pwg’y.  (5.8) 
Equations and boundary conditions governing the water-flow perturbations may 

be transformed into the same equations as those that govern air-floy perturbations. 
To do this the spatial coordinates are reflected, 2 = -kX and Z = -kZ, thus 
mapping the domain of the water into the domain of the air. The wave travels 
against the unperturbed water flow and so 2 = -c. When the air flow is at a 
wave crest, the water is at a trough of its motion, hence set f i  = -y(k,2). In 
the water, the unperturbed velocity is from right to left, hence it is also reflected, 
UB = -UB/UO, = (eW/~)ln(2/zo),  where E ,  = u.,/UoW and Uo, is the velocity scale 
in the water (defined in $5.3.1). Furthermore, the unsteady terms in the momentum 
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equations can be absorbed into advection if 
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where the matched height is z,, = kzoexp(-~c/u,,). Boundary conditions and 
equations governing perturbations to the flow in the water are then mapped to 
(5.4)-(5.7) if 

} (5.10) Au, = Re{-UowG(2)kfi}, 
Apw = Re{p,( Ui,8(2) - g' /k)kf i} ,  

Aw, = Re{-UowB(2)kfi}, 
AT, = Re{p,u?,@) kfi} ,  

It is convenient to rewrite these relations such that the perturbations are proportional 
to g ( X ,  c) ,  the same factor as in the air-flow perturbations. This is done by noting that 
fi(X, i?) = -qt(X, c)  (superscript t denotes complex conjugate) and using Re(At) = 
Re(A) for a complex number A. Perturbations in the water may then be written 

Au, = Re{ UoW&t(2) k q } ,  Aww = Re{ Uo,Bt(2) k q } ,  
Ap, = Re{-pw(Uiw8t(2) + g ' /k )kq} ,  AT, = Re{-p,u?,Qt(2)kq}, 

which also satisfy (5.4)-(5.7). 

5.3. Summary of method f o r  solving the generic equations 
Hunt et al. (1988) have solved the generic equations (5.4)-(5.6) subject to the boundary 
conditions (5.7) for a stationary wave (c  = 0), using the method of matched asymptotic 
expansions, and their solutions have been extended to higher order by Belcher et al. 
(1993). When the wave moves the equations are different because the unperturbed 
velocity profile is different and, if c > 0, there is a matched height at 2 = z,, in the 
air. Belcher & Hunt (1993) analysed the flow in the vicinity of the matched height 
when the waves are slowly moving. Then z,, is at the bottom of the inner region, 
close to the interface and the velocity perturbations at z,, are small. Consequently, 
the flow above the matched height is the same as the flow over a stationary wave (with 
small corrections), but with a modified roughness length equal to z,,. Here we also 
study the slow-wave limit and so solutions to the generic equations are quoted from 
Belcher & Hunt (1993) and used, with (5.2) and (5.11), to construct perturbations to 
the air and water flows. A brief outline of the asymptotic method is presented so that 
the solution can be fully interpreted. 

5.3.1. Outer region 
In the outer region the turbulent stress is changed by rapid distortion and, according 

to $4.3.1, when the waves are slowly moving the Reynolds-stress gradients are 0 ( e 2 )  
smaller than the inertial terms and are negligible. Equations (5.4)-(5.6) can then be 
reduced to 

(5.12) 

Approximate solutions to (5.12) are constructed by dividing the outer region at the 
height where li?"/ol equals one. In the air flow, 6 is typically logarithmic up to a 
height of O(k-')  and liT"/61 equals one at 2 = h, where hlni(h/kz,) = 1. Using the 
definitions of UO and E ,  this implies that 

h = ( E / K ) ~  4 1. 
A 

(5.13) 
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Conversely, if k-' is much greater than the boundary-layer thickness, 6, then since 
there is no shear in the unperturbed velocity outside the boundary layer 

h = k6 G 1. (5.14) 

This might be appropriate in the water flow. 
In the upper layer, where 2 + f i ,  @'/ 0 is small and the perturbed flow is irrotational 

and inviscid. In the middle layer, where 2 efi, @'/0 is large and the perturbations 
are inviscid but rotational. Pressure is constant across the middle layer at leading 
order and its value is determined by matching with the upper-layer solution at 2 - f i . 
A natural scale for velocity perturbations is therefore UO, = U(h), the unperturbed 
velocity evaluated at height h (where f i  = kh).  Velocity scales in the air and water are 
then 

(5.15) 
The different signs come from the different directions of the base flows in the air and 
water. 

h 

UO, = ( u * , / ~ )  ln(h,/zo) - c, UO, = ( u . , / ~ )  ln(h,/zo) + c. 

5.3.2. Inner region 

i = kl and 1 is defined in (4.3) or (4.5). The depth can be related to E by 
The inner region is analysed by defining a scaled coordinate [ = 2/? = O(1) where 

(5.16) 

where S = O(i) = 1 + O(eln(l/E)) is the shear across the middle layer. The mixing- 
length model is used in the inner region, and, in dimensionless form, the perturbation 
shear-stress gradient is 

E 7 a t  = s; (g) = O(1). 

az 
Hence the streamwise momentum equation becomes 

(5.17) 

(5.18) 

(The horizontal gradient of streamwise-velocity variance has been neglected-it affects 
the solution at only O(e2),  Belcher et al. 1993.) Solutions are calculated iteratively in 
powers of E .  

Detailed analysis shows that the shear-stress gradient calculated using the above 
method diverges logarithmically towards the interface and it is necessary to analyse 
an even thinner, 'inner surface', layer (Sykes 1980). Across this layer the perturbation 
shear-stress gradient is approximately constant. Belcher & Hunt (1993) show that, 
when k1,/(21c2) G 1, the matched height in the air flow lies within this layer and plays 
no role in the dynamics (because the effects of turbulent stresses are dominant in 
the inner surface layer). Hence Miles' (1957) critical-layer mechanism, which is an 
inviscid instability mechanism, cannot be effective in this parameter regime. In the 
water flow, for waves travelling with the wind, there is no matched height. 

5.3.3. Imaginary pressure coeficient 
Surface pressure perturbations that are out of phase with the irrotational flow 

produce a transfer of energy across the air-water interface and hence wave growth 
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FIGURE 5. Schematic of non-separated sheltering. The perturbation shear-stress gradient decelerates 
the flow in the inner region and leads to streamlines in the outer region being displaced downwind 
of the wave crest. 

or decay (see $5.5). In a normal mode analysis such an out-of-phase pressure is 
represented by an imaginary pressure coefficient. 

Belcher et al. (1993) extended the Hunt et al. (1988) analysis and calculated the 
imaginary part of the pressure perturbation. A number of different physical processes 
can give rise to out-of-phase flow perturbations, but the dominant contribution to 
the asymmetric pressure comes from what Belcher et al. (1993) call non-separated 
sheltering and has the value 

ie2 
S2 

Im(6) = --Re{?([ -+ 00) - Q(0)). (5.19) 

Recall that the real part of the perturbation coefficient is the part that is observed 
at the crest of a sinusoidal wave. This expression has a simple physical explanation 
(refer to figure 5). Close to the surface, in the inner region, the real part of the 
perturbation to the shear-stress gradient is negative and decelerates the mean flow. 
The total deceleration in the inner region is the integral of the shear-stress gradient 
over the depth of the inner region, which is the change in shear stress across the inner 
region-the right-hand side of (5.19). Thus, streamlines at the top of the inner region 
are closer to the windward side of the wave than the leeward side. Flow in the outer 
region is then also asymmetrically displaced about the wave. However, according to 
RDT, shear-stress gradients are 0 ( e 2 )  in the outer region and there is no additional 
deceleration there (at leading order in c) .  Hence, by Bernoulli, a pressure perturbation 
develops in the outer region that has its minimum displaced slightly downwind of 
the wave crest. This pressure is constant across the inner region (at leading order in 
c )  and so the surface pressure has an imaginary component. This is non-separated 
sheltering. 

5.4. Matching the shear stress at the interface 
Thus far we have set streamwise velocity at the interface to zero and simply computed 
the values of the shear stress either side of the interface: they are 

Az,(O) = p,u?,Re{Q,(O) ky}, Az,(O) = -p,u?,Re{ [%(0)lt ky}. (5.20) 
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The solution forced by the undulating interface is denoted with superscript ( U ) ;  the 
solution derived using the methods of $5.3 by Belcher & Hunt (1993) is 

where subscript CI denotes either air or water flows, S, = U,(l,)/U,(h,) is the shear 
across the middle layer and y E  fi: 0.577 is Euler's constant. The unperturbed shear 
stress is continuous (2.3) and so, if (5.21) is substituted into (5.20), then we find that 
the (U)-part of the shear-stress perturbation on either side of the interface has equal 
magnitude (with small corrections) but opposite sign. 

But, according to the dynamical coupling condition (3.6), shear stress is constrained 
to be continuous at the interface. This stress imbalance can be corrected if we 
remember that the streamwise-velocity perturbation at the interface, Au(O), was set to 
zero in the calculation of the (U)-perturbations. If Au is allowed to have a non-zero 
value at the surface, then further perturbations to the flow are produced; in particular, 
the surface shear stress is changed. The value of Au(0) is chosen such that shear stress 
is continuous at the interface. 

As a consequence, if the flow in the water is assumed irrotational and inviscid, then 
it is not possible to satisfy the two boundary conditions that both velocity and stress 
are continuous at the interface: so there must be some sort of boundary layer in the 
water. 

Changes to the boundary layer over a flat surface with a varying surface velocity 
are denoted by superscript ( V ) .  The (I/)-perturbations are governed by the same 
equations as the (U)-perturbations, (3.10)-(3.12), but without the terms from the 
coordinate transformation. These equations are put into the standard form (5.4)-( 5.6) 
using the scalings described in (5.2) and (5.11). Solutions to this problem have been 
found by Belcher, Xu & Hunt (1990) using methods similar to those described in 
55.3. The governing equations are linear so the complete solution for flow over a 
wave with varying surface velocity is obtained by adding the (V)-perturbations to the 
(U)-perturbations (Belcher & Hunt 1993). 

Figure 6 shows schematically how varying the surface-velocity perturbation can be 
used to satisfy stress continuity at the interface. Figure 6(a) shows the ( U )  velocity 
and shear-stress perturbations at the wave crest. Since the vertical gradient of AuLu) is 
positive at the interface, A7k')(0) is also positive. Conversely, in the water, dAuLu)/dZ 
is negative and so is the surface-shear-stress perturbation. Flow changes induced by 
a positive perturbation to surface velocity are sketched in figure 6(b). Gradients of 
perturbation velocity are positive and negative, respectively, above and below the 
interface, which gives rise to negative perturbations to the air-side shear stress and 
positive ones below the interface. The overall surface stress is made continuous by 
adding these two components, thereby decreasing the surface shear stress in the air 
and increasing it in the water. 

On the air side A?Lv)(0) scales on Au(O)/Uo, and AtLv)(0) on Au(O)/Uo,. Since 
Uo,/UoW > 1 and Au(0) is continuous, this implies that Azr)(O) is larger than AzLv)(0). 
Hence, the resulting surface shear-stress perturbation is positive at the wave crest and 
close to A7L')(0). 

If we write Au(0) = Uo,fi,(O)ky, then from Belcher & Hunt (1993) the surface shear 
stress induced by surface-velocity variation is 

f, 2 tL")(O) = -- [l + -{in/2 + 2y - ln(z,,/zo)>] = -- [l + E,B, ] .  (5.22) 
SC? K S ,  s,2 
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FIGURE 6. Matching the surface shear stress by varying the surface velocity: (a )  schematic of 
(U)-perturbations at the wave crest; ( b )  schematic of (V)-perturbations at the wave crest. 

Dimensional perturbations are obtained using (5.20). 
Velocity is continuous at the interface, so that &(O) = &(O) Uoa/Uow. The overall 

stress perturbation is given by 2, = 2;') + 2Lv), so that the magnitude of the surface- 
velocity variation is determined by equating stress at each side of the interface. This 
implies that 

A simplified form of this expression is developed in $6.2, where plots of the surface 
velocity are also shown. 

5.5. Determination of c 
According to the dynamical coupling condition, (3.6), normal stress, which is the sum 
of pressure and normal Reynolds stress, is continuous at the interface. First consider 
the normal Reynolds stress. In the inner region perturbations to the normal Reynolds 
stress are modelled as constant multiples of the shear stress perturbation, see (4.7). 
Hence, normal Reynolds stress is continuous across the interface because shear stress 
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is continous. Thus pressure is matched at the interface to determine the eigenvalue 
c, which gives the wave phase speed (real part of c) and growth rate ( k  times the 
imaginary part of c) of the wave. 

The pressure perturbation just above the interface is 

APa(0) = PaU&eakq, (5.24) 

and just below it is 

(5.25) 

In the water, perturbation pressure is composed of a dynamic part, -pWUiw8,, and 
a hydrostatic part, -p,g'/k. Furthermore, each pressure coefficient is composed of 
two parts: that induced by the wavy interface (denoted by superscript ( U ) )  and that 
induced by the surface-velocity perturbation (denoted by superscript (V)) .  Solutions, 
from Belcher et al. (1993) and Belcher & Hunt (1993), for the undulation part are 

(5.26) 

Solutions, from Belcher & Hunt (1993), for the streamwise-velocity variation part of 
the pressure perturbation are 

(5.27) 

These expressions show that the magnitude of the normalized pressure perturbation 
is one with corrections of O(e:). Hence we write 

ea = 3:V + 8;") = -eiA&, 6: = [$($I t + [$:I] t = -eWw (5.28) 

where the A$Im are phase shifts of the pressure perturbations from the wave crests. 
A$Ia is negative and so, in the air, the surface pressure minimum is shifted downwind 
of the wave crest; conversely, in the water, A$Iw is positive and the surface pressure 
minimum is shifted upwind of the wave crest. 

The velocity scales are rewritten as 

uoa  = ua - C, Vow = Uw + C, (5.29) 

where um = (u.,/~)ln(h,/zo). Pressure is matched at the interface so that c is 
determined from 

- pa(ua - c)2eiAb" = p w { ( ~ ,  + c)2eiAbw - g'/k). (5.30) 

NOW write Pa = Pw = pweiAbw and g = g'e-iA@w , and (5.30) reduces to the 
dispersion relation for a vortex sheet between two fluids of densities p a  and Pw and 
a gravitational acceleration S .  If co = (g'/k)i is the phase speed of a free-surface 
irrotational wave and Z.0 = ( g / k ) i ,  the solution to (5.30) can be written 

Capillary effects can be included by redefining co as the wave speed for capillary- 
gravity waves using the formula given in Phillips (1977, p. 37). However, for such 
small wavelengths, the base flow used in the present analysis may not be appropriate. 
Capillary effects are not further discussed here. 
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6. Evaluation and interpretation of results 
Solutions described in the preceding section cannot be evaluated immediately 

because the velocity and stress perturbations depend on c, which in turn depends 
on velocity scales, Uoa. Hence, to obtain specific results, solutions are calculated 
iteratively. We have done this numerically. Firstly, the wave speed is approximated 
by C O ,  the speed of irrotational waves. The scale heights of the inner regions in the 
air and water are then found using (4.3) and (4.5); the scale heights of the middle 
layers and the velocity scales, Uoa and Uo,, can then be evaluated (using (5.15)). The 
wave speed is then corrected using (5.31) and the procedure repeated. Convergence 
is achieved after three or four iterations. Once la, 1, and the wave speed are found, 
the surface velocity perturbation and growth rate of the wave are evaluated. These 
results, together with approximate formulae, are now presented. 

S. E. Belcher, J .  A. Harris and R. L. Street 

6.1. Wave phase speed 
The phase angles A& are O ( E ~ ) ,  and so at leading order c is determined from (5.31) 
with p a ,  p ,  and S replaced by pa, p, and g', namely 

This expression has imaginary solutions, corresponding to Kelvin-Helmholtz insta- 
bility, if the term in the square root is negative, otherwise it is real and is the 
leading-order expression for the wave phase speed. The condition that the square 
root is negative reduces to 

because Ua s Uw and the density ratio is small - for an air-water system (pa/pw)f = 
1 /30. If typical numerical values are substituted, we find that Kelvin-Helmholtz 
instability requires small wave speeds and thus small wavelengths. For example, when 
kzo is between and lop7 and co/u., between 1 and 20, Ua/uSa ranges from 
about 26 to 37, hence, Kelvin-Helmholtz instability occurs only when co/u., 5 1. 
When u., = 0.5 m s-l, Kelvin-Helmholtz instability then requires i 5 0.1 m. These 
small wavelengths are already excluded from our analysis because they require that 
capillary effects and the viscous sublayer in the base flows need to be considered. 
Hence, Kelvin-Helmholtz instability is not active in the parameter range we study. 

When co/u., 2 2 (the exact value depends on kzo), (pa/pw)f(Ua + Uw - CO)/CO is 
small and equation (6.1) can be approximated thus: 

This expression for the wave speed is referred to a frame where the unperturbed 
velocity is zero at the interface (see figure 2). Changing to a frame where there is no 
flow at large depths in the water, the phase speed is Re@), given by 

Re(Z.) - us f co - uw + O(Pa/Pw), (6.4) 

where Us is the surface drift in the frame of reference with no water motions far 
below the interface. For the remainder we focus on positive co, for waves moving 
with the wind. 

Equation (6.4) shows how the wave speed depends on surface drift, Us, and shear 
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in the water flow, through U,. Surface drift is part of the base flow and so it is not 
part of our analytical solution, rather it must be specified beforehand (the numerical 
model described in Part 2 calculates the base flow and hence Us).  The value of U, is 
determined by the scale height of the middle layer in the water, h,, which is dependent 
on the depth of the wind-driven drift current and the wavelength (see 55.3.1). Uw lies 
between two extreme values. Firstly, in the absence of shear, U,  = 0 and waves are 
advected along with the current and have speed co + Us.  Secondly, if the wavelength 
is longer than the depth of the sheared current, then hw equals the boundary-layer 
depth and U ,  = Us. The waves are then so long that the inviscid motions they induce 
are unaffected by the wind-driven current and their speed is c B co. In summary, 
surface drift tends to increase wave speeds and shear in the drift current tends to 
decrease the wave speed; these qualitative findings are consistent with van Gastel et 
al. (1985), who considered gravity-capillary waves of small wavelength. 

Experiments by Wu (1975) suggest that Us = OSu,,. Furthermore, U ,  is of the 
order of Us.  The wave speed is therefore co with corrections of O(u,,). We consider 
values of cO/u., 2 1 and so the O(u,,) corrections to the wave speed are small relative 
to co. By contrast, van Gastel et al. (1985) considered small values of co/u., and 
hence found that O(u,,) corrections to co due to drift are important. 

6.2. Surface velocity variation 
The surface-velocity variation, which is given by (5.23), can be crudely approximated 
in the limit that E ,  and E ,  approach zero; we find 

Hence, at leading order, the surface-velocity variation has a larger magnitude than if 
the flow in the water were inviscid and irrotational, when Au(O)/co = 1. Variation of 
surface-velocity perturbation (obtained from (5.23)) with c/u., is plotted in figure 7, 
which confirms the simple argument described in $5.4 that it is positive. Figure 7 also 
indicates the range of validity of the approximations: at large values of c/u.,, the 
surface velocity becomes large indicating that the theory is no longer valid. Hence 
the approximations used in the theory require that c/u,, 5 10 when kzo = lop4, 
c/u*, 5 13 when kzo = and c/u., 5 16 when kzo = 

Variation of the surface shear stress with c/u., is shown in figure 8. Also shown 
is the shear stress when calculated from only the undulation part of the solution at 
the air and water sides of the interface. The argument of 55.4 is confirmed and the 
balanced stress is closer to AzLu)(0). 

6.3. Wave growth rate 

The wave growth rate is kIm(c). With the condition that (p,/p,)(U,+ U w - c ~ ) 2 / c ~  -e 1, 
(5.31) can be expanded by the binomial theorem, and the imaginary part of c is given 
by 

+ O ( $ ) .  

Wave growth is therefore controlled by the phase of the dynamical pressure per- 
turbations above and below the interface. Notice how the terms from the air flow 
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FIGURE 7. Surface velocity perturbation at the wave crest for various relative surface roughnesses. 
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FIGURE 8. Surface shear-stress perturbation at the crest of the wave, kzo = lo-'. 
C o k a  

are multiplied by p,/p,, whereas the first term from the water flow is not. Since 
pa/pw = 1/800, this suggests that the evolution of the waves is sensitive to the flow 
in the water. 

If the truncated mixing-length model is used, the imaginary part of the pressure 
in the water flow is O(p,u?,) which is equal to 0(pau?,), whereas the real part is 
O(p,( U,  + c ) ~ )  = O(p,c& using (6.3). The ratio of these gives the magnitude of the 
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pressure phase angle, 

Hence, according to this model the effects of the drift current on wave growth are of 
the same order as the effects of the air flow. We will show that different turbulence 
models can change this magnitude. 

Phase angles of the pressure computed using the truncated mixing-length model 
(4.7) are obtained from (5.26) and (5.27); they become, on using the approximation 
to Re(c), 

A 4 w  = O((pa/pw)(ula/ci)). (6.7) 

Au(0) 1 

- -2 "(O) ') + 0 (2)  , (6.8) 

If (6.8) and (6.9) are substituted into (6.6), then the growth rate of the wave is given, 
in dimensionless form, by 

CO 1 

+o($)  (6.10) 

Figure 9(a-c) shows the variation of wave growth rate according to (6.10) with c/u*,, 
for kzo = lop4, lop5 and Also shown for comparison are growth rates obtained 
by assuming that the flow in the water is irrotational (obtained by setting A+, = 0 
and U w  = 0 in (6.10)). If effects of the wind-driven current are included, then the 
growth rate is significantly reduced compared with values obtained from flow over 
irrotational waves. At large values of C / U * ~ ,  the growth rate from the fully coupled 
model falls sharply to zero; in contrast, results from the irrotational-wave model 
remain approximately constant. Figure 9 also shows values for the growth rate 
obtained from the (U)-perturbations only (so that Au(0) is set to zero and the shear 
stress is discontinuous across the interface); this might show the maximum effect 
that the wind-induced current can have on wave growth. The growth rate obtained 
from only the (U)-perturbations is much smaller than from the fully coupled model, 
particularly at low wave speeds. 

The differences between the fully coupled model and the irrotational-wave model 
are from two effects. Firstly, non-separated sheltering occurs in both the air and 
water flows, which leads to the surface pressure minimum being shifted from the 
wave crest by A4,  and A4,  in the air and water (see figure 10). In the air flow, 
A$a is negative and the pressure minimum is shifted downwind of the crest, which 
promotes wave grow; whereas, A+, is positive and the shift of the pressure minimum 
is upwind, which tends to inhibit wave growth. Hence, the Reynolds stress in the 
turbulent drift current, which leads to non-separated sheltering, tends to reduce the 
wave growth rate compared with flow over irrotational waves. The second effect 
of the wind-driven current on wave growth in our model arises from satisfying the 
boundary condition that shear stress is continuous at the interface. This condition has 
been satisfied by introducing the (I/)-perturbations. Thence, AzLu)+(")(0) is reduced 
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FIGURE 9. Growth rate of the wave: (a )  kzo = (b)  kzo = lop5, (c) kzo = lop6. Solid line, full 
theory; dotted line, (U)-perturbations only; dashed line, wave treated as irrotational. 
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" t  

FIGURE 10. Schematic showing how coupling the air and water flows changes the wave growth rate. 
Profiles of the shear-stress perturbation at the wave crest are sketched: the dashed lines show the 
(U)-perturbations and the solid lines the profiles in the balanced state. 

compared with Az$')(O); whereas, AzL')+(')(O) is increased from AzL')(O), which is 
negative, to a positive value equal to AzL')+(')(O) (see the sketch in figure 10). Non- 
separated sheltering, which is proportional to the change in shear stress across the 
inner region (see $5.3.3), is reduced in the air flow and so the wave growth rate is 
reduced. In the water flow the (I/)-perturbations are of comparable magnitude to 
the (U)-perturbations, because Au(O)/co = O(  1), and the non-separated sheltering 
in the water is significantly reduced compared to the value obtained from only the 
( U)-perturbations. 

In Part 3 we examine how turbulent motions in the water change the energy budget 
of the coupled flow, which provides further insight into and interpretation of (6.10). 

7. Discussion and comparisons 
Recently there have been a number of asymptotic studies of air flow over a wave 

that treated the flow in the water as inviscid and irrotational (Jacobs 1987; van 
Duin & Janssen 1992; Belcher & Hunt 1993). These studies are all based on the 
same approximations, namely that E + 0 with c/u., fixed and of order one, but 
reached different conclusions so it is interesting to compare their results to reconcile 
the differences. 

Van Duin & Janssen (1992) used a general eddy-viscosity model for the turbulent 
shear stress, namely Az = v,dAu/dZ,  throughout the flow. Their choice of eddy 
viscosity was 

where the mixing length is / = KZ. This model reduces to Jacobs' (1987) form if 
n = 0 and to the standard mixing length if n = 1. Van Duin & Janssen (1992) worked 
with the stream function of the perturbed flow and found that in the outer region 
it is 



146 S. E. Belcher, J. A. Harris and R. L. Street 

Y - ak (1 - c/UB(k-')} 

[ed' + €1 { - i ( y  + 1n2)e-2 - -e2E1(22) 1 + - 2)e& 
Ic 

where El is an exponential function and the small parameter is €1 = u*a/(UB(k-l)-co), 
which is of O(ea). They then obtained an expression for the pressure perturbation at 
the interface. Using their results, the phase shift of the pressure minimum from the 
wave crest can be calculated (as in $5.5); in the present notation it is 

A 4 y D j  is bigger by a factor O(l/e,) than the value used here, obtained by 
Belcher et al. (1993) and Belcher & Hunt (1993) with the truncated mixing-length 
model. When Au(0) = 0 our value is 

A4a = -4&lS:. (7.4) 

Before presenting quantitative comparisons of these models, (7.3) is extended 
heuristically to provide an expression that is correct to O(e:) for the surface-pressure 
phase obtained using the mixing-length model throughout the flow. Firstly, there are 
second-order terms generated in the outer region. These terms can be estimated on 
observing that (7.2) contains an O(el) term that decays exponentially with height. If 
this term is grouped with the 0(1) exponential, then, following the analysis of van 
Duin & Janssen (1992), the imaginary term in (7.2) becomes multiplied by a factor 
of (1 - (y + ln2)e1/Ic}, and thence so is the imaginary part of the surface pressure. 
Secondly, as Wood & Mason (1993) recognized, these outer-region terms must be 
added to the contribution from non-separated sheltering in the inner region (7.4). 
Overall then, the pressure phase from using mixing length throughout the flow from 
this heuristic procedure is 

There is a physical interpretation of this procedure. The pressure phase in (7.3) is 
from a sheltering effect in the outer region, i.e. interaction in the outer region between 
inertial terms and the spuriously large shear-stress gradient obtained using mixing 
length in the outer region. This is in addition to the non-separated sheltering in 
the inner region and so, since the analysis is linear, the two effects must be added 
to obtain the total phase shift from using mixing length throughout the flow. The 
arguments of $4 demonstrate that use of mixing length in the outer region does not 
correctly represent the physical processes and will not agree with experimental data. 

Figure 11 shows comparisons of these various formulae when they are used to 
compute drag on sinusoidal terrain, which is given by 

Results of experiment and calculations based on turbulence models that relax to 
rapid distortion in the outer region are shown as filled symbols in figure 11, whereas, 
calculations based on an eddy viscosity in the outer region are shown as open 
symbols. Figure 11 clearly shows that the Belcher et al. (1993) formula, (7.4), is in 
good agreement with the experimental value and results of computations that use a 
full Reynolds stress model. The van Duin & Janssen formula (with n = l), however, 
is neither in good agreement with numerical computations that use a mixing length 
throughout the flow nor with the Reynolds stress model. But when it is corrected 
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FIGURE 11. Force on a rigid sinusoidal wave (a hill). Theory: -, truncated mixing length (7.4); ---, 
mixing length throughout, (7.5); ----, van Duin & Janssen, (7.3). Numerical model: 0, Belcher et 
al. (1993) second-order closure; 0, Belcher et al. (1993) mixing-length closure; A, Townsend (1972); 
v, Townsend (1980). Experiment: ., Zilker & Hanratty (1979) 

by adding the contribution from non-separated sheltering, giving ( 7 3 ,  the agreement 
with the mixing-length computations is reasonable, although they are up to a factor 
of two greater than values obtained with (7.4) and the experimental value. We 
acknowledge that, formally, for (7.5) to be an asymptotic expansion, the second term 
should be much smaller than the first. However, (7.5) agrees with the numerical 
model even when the two terms are comparable. It is clear from (7.5) that using 
other eddy-viscosity models in the outer region (i.e. different values of n)  will also 
give drag coefficients that are too large. We believe that figure 11 provides compelling 
evidence that it is inappropriate to use the mixing-length model in the outer region. 
Furthermore, it provides strong evidence that the analytical approach used here with 
the truncated mixing length, which leads to (7.4), gives reliable values for the pressure 
phase shift. 

7.1. Wave growth rate calculated using mixing length throughout 
It is interesting and instructive to calculate the growth rate of the wave if the 
mixing-length model is used throughout the flow. 

The phases of the pressure perturbations are given by 

(7.7) 
A$ a - - s  - 2ElaK { 1 - ( Y  + In 2)t.lalK) - 4&3,4, 
A$w = ;elwic (1 - ( y  + 1n2)elw/~} + 4t.$/S:. 

The growth rate then becomes 
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FIGURE 12. Growth rate of the wave; results computed using the mixing length throughout the 
flow. 

Hence, if the mixing-length model is erroneously used throughout the flow, then the 
effect of sheltering in the outer region of the water motions induces a contribution 
to wave growth that scales as ( p , / p w ) f ,  whereas, according to the truncated mixing- 
length model, non-separated sheltering in the water scales as pa/pw.  Hence the 
growth is incorrectly dominated by sheltering in the outer region of the water flow. 
Figure 12, which shows the variation of (7.8) with c/u*,, demonstrates that using 
mixing length throughout the flow leads to negative wave growth rates for all c/uea. 
Furthermore, the magnitude of these damping rates is about twenty times the growth 
rates obtained with the truncated mixing length and plotted in figure 9. According to 
the mixing length model, there are no waves on the ocean! This ridiculous conclusion 
provides more evidence that it is incorrect to use mixing length throughout the flow, 
particularly in the water. 

8. Summary 
Theoretical scaling and analysis have been developed to describe coupled air-water 

boundary-layer flow with a wavy interface. It has been shown that the unperturbed 
surface stress exerted by wind at the interface leads to a sheared drift current in the 
water, which previous laboratory experiments show to be turbulent at even low wind 
speeds. We have modelled these turbulent water motions in our analysis. 

Scaling arguments, borrowed from flow over hills and extended, show how per- 
turbations to the turbulence has a two-layer structure. Close to the surface, in the 
inner region of depth scale la, the turbulence is close to local equilibrium and eddy- 
viscosity models can be used. In an outer region, far above the inner, turbulence is 
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changed by rapid distortion and eddy-viscosity models are inappropriate. Using this 
division, the flow has been characterized in terms of the ratio k 1 , / ( 2 ~ ~ ) .  For slow 
waves k l , / ( 2 ~ ~ )  5 and the inner region is a thin layer close to the surface. When 
kl,/(2x2) 2 1 the waves are fast and the inner region is thick and eddy-viscosity 
models are appropriate over the whole significant flow domain. Between these limits 
more sophisticated models are required. For waves travelling with the wind, the water 
flow has a narrow inner region for all wave speeds. 

The analytical model for slow waves is based on three approximations: small 
wave slope, ak ~ 1 ;  thin inner region, k1, / (2d)  = eu/Sa e 1, where e, = u.,/Uoa; 
and an inner region that lies well within the unperturbed boundary layer. Solutions 
for perturbations to the air and water motions are based on those of Belcher & 
Hunt (1993), who made extensive use of solutions for flow over a fixed wavy surface 
(a hill) found by Hunt et al. (1988) and Belcher et al. (1993). Perturbations to the flow 
induced by the undulating wave shape do not have continuous stress at the interface 
and a second component of the solution induced by a varying velocity at the surface 
is required to balance surface stress. 

Pressure is matched at the interface to determine wave phase speed and growth 
rate. The phase speed is close to the value for irrotational free surface waves. Wave 
growth is determined by the phase of the dynamic pressure perturbations either side 
of the interface. The pressure phase shift in the air flow leads to a contribution to 
wave growth that is scaled down by the ratio of the fluid densities ( p a / p w ) ,  whereas 
the phase shift in the water leads directly to a contribution to Im(c). Hence, there is 
extreme sensitivity of wave growth to motions in the water and the coupling conditions 
at the interface. We imposed the boundary condition that stress is continuous across 
the interface. 

According to our calculations of the coupled flow with the truncated-mixing- 
length model, wave growth is reduced by a factor of about two compared with 
calculations based on flow over an irrotational wave. This reduction arises from 
two distinct mechanisms. Firstly, perturbations to the wind-driven drift current are 
asymmetrically displaced about the wave by non-separated sheltering. This sheltering 
leads to a pressure perturbation that is in phase with the wave slope and wave 
growth is inhibited. We have performed calculations using a mixing-length model 
throughout the flow that show how the model for the turbulent shear stress in the 
water has a large influence on this mechanism for wave damping. Secondly, there are 
perturbations to the air flow that arise from imposing the boundary condition that 
stress is continuous across the interface. The non-separated sheltering effect in the 
air is reduced by these motions and therefore the tendency for the wind to promote 
wave growth is reduced. 

Perhaps the most interesting questions that arise from this study relate to the role 
played by the wind-induced drift current in the energy budget of the wind-wave 
interaction. How is energy transfer from wind to waves influenced by turbulent 
motions in the water? Which motions in the water are promoted by this energy 
transfer? How much energy from the wind increases wave energy and how much is 
dissipated in the water? What are the mechanisms for energy dissipation in the water 
motions? These are some of the issues we investigate in Parts 2 and 3 of our study. In 
Part 2, we describe a numerical model of the coupled flow and present comparisons of 
velocity and shear-stress profiles with the theory of this paper and experimental data. 
From these comparisons we suggest quantities that need to be modelled correctly to 
capture features such as wave growth. In Part 3 we investigate the energy budget for 
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the coupled flow. Expressions for the wave-induced perturbations from the theoretical 
and numerical models are used to evaluate the terms in this budget. The results are 
used to make further comparisons of our models with experimental measurements 
and to suggest improvements to wave-forecasting models. 
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